
Timothy Kang
ITMS 555
Assign10

Fig 1.1: This is the pattern that is set on the phone (This corresponds to 5-8-1-4-7-3)

Fig 1.2: Making sure that phone is properly detected

Fig 1.3: Starting up adb shell and gaining root privileges

Fig 1.4: Copying gesture key to sdcard/Download directory and confirming that it has been

copied

Fig 1.5: Pulling gesture.key to desktop

Fig 1.6: Running script to create hash dictionary

Fig 1.7: Run another python script to lookup hash database and find pattern

Report:

The first figure shows the pattern that was set as a lock on my phone. The pattern length is 6 and

if compared to a lock screen numbering, you can see that the pattern is 5,8,1,4,7,3. Unlike with

PIN/password locks which require finding hash value in /data/system/password.key and salt

value in /data/system/locksettings.db, hash values of pattern values are stored at

/data/system/gesture.key. This was retrieved by copying the file onto the /sdcard/Downloads

directory after rooting in. On a windows terminal, I can now pull the gesture.key file into any

directory I want which in this case was my desktop. Since a pattern lock can only have a set

number of possible patterns, I am able to do a dictionary attack. Simply put, this so-called

dictionary will have every possible pattern so that the hash value of gesture.key can be compared

with it and cracked. The GenerateAndroidGestureRainbowTable.py script was used to create the

dictionary which is called AndroidLockScreenRainbow.sqlite. Another script called

Android_GestureFinder.py can be run to solve the pattern as long as the gesture.key, python file,

and sqlite file are all in the same directory. Typically, the python file should be edited to work

properly for cracking but fortunately for me, it was already done on RADISHng. Once you run

this script, a hash is displayed along with the pattern. The pattern it outputted was indeed the

correct pattern lock on my phone.

