KringleCon Holiday Hack Challenge 2018

e Objective 1: Orientation Challenge
o A multiple choice quiz? My specialty.
o Not much to this one. A few simple Google searches help with finding the answers.
o The flag that is given is “Happy Trails”
e Objective 2: Directory Browsing
o https://cfp.kringlecastle.com/
o This was the site that was provided and when you press “Apply Now!”
= https://cfp.kringlecastle.com/cfp/cfp.html is the site that you are directed to
o Thereis clearly a directory here that the html file is located inside
o Deleting cfp.html yields an index of this directory with a csv file
o Now find the talk that they are looking for and you get “John McClane”
e Objective 3: de Bruijn Sequences
o My first thought: What in the world is that?

o
o Fortunately for me, there seems to be generators out there to find all combinations

o As | was going down the list, | found the answer to be 0120 which equates to triangle
square circle triangle and the elf says, “Welcome unprepared speaker!”
e Objective 4: Data Repo Analysis
o Finding password to encrypted zip file on git huh?
o Trufflehog to the rescue
= Trufflehog —regex —entropy=True
https://git.kringlecastle.com/Upatree/santas castle automation
o Lo and behold a password is instantly given: “Yippee-ki-yay”
e Objective 5: Ad Privilege Discovery
o Linux image was given and we are supposed to find a reliable path from a
Kerberoastable user to the Domain Admins group
o Hint that was given was to use Bloodhound
Opened the vm on VirtualBox (made sure to change to 64 bit or it wouldn’t run)
There is an option that says “shortest path to domain admins from kerboroastable

users”

B v Run _ Oracle VM VirtualBox - a

& Applicalktr

= BloodHound = + X
= A K Y s
E3
F3
%,
%, ®
L2
Memberol A CanRDP . Hassession . CanRDP HasSession «©
3
‘ ExcouteDCOM . HasSession . Memberf g
|
o “dn\
N o
HasSession ‘
+ |
e |
| ARaw Querya I - |
o) Bl =0 E R an

o This is pretty straightforward since we know to avoid RDP as a control path
o LDUBEJ00320@AD.KRINGLECASTLE.COM
Objective 6: Badge Manipulation
o Bypass authentication mechanism of room. Sample employee badge is given. Find

a5

{Nonmrous
. ENTERPRISES

%

|

ALABASTER SNOWBALL

il

O O O O O

O O O O

O

oo

Badge Scan-O-Matic 4000

: Quite the interesting lock

Tried inputting the badge picture that was given and result was “PNG FILES ONLY”

Using the power of paint, | converted it to a png file

Result: “AUTHORIZED USER ACCOUNT HAS BEEN DISABLED!”

The hint that was received from the elf was that there may have been an SQL injection

vulnerability.

Clearly we need a fake QR code that will work

| came across a grcode python library which will probably be extremely helpful

A test.png file was created using “qr “’” > test.png”

A long error is displayed:

= EXCEPTION AT (LINE 96 "user_info = query("SELECT

first_name,last_name,enabled FROM employees WHERE authorized = 1 AND uid
='{} LIMIT 1".format(uid))"): (1064, u"You have an error in your SQL syntax;
check the manual that corresponds to your MariaDB server version for the right
syntax to use near " LIMIT 1' at line 1

The payload | found is ' OR enabled = 1 # found at

https://security.stackexchange.com/questions/200244/sql-injection-mariadb

Used the same qr command but added this payload instead of the random single quote.

It worked :D

Flag: (just the numbers)

e Objective 7: HR Incident Response

O

Gain access to https://careers.kringlecastle.com/ and fetch document
C:\candidate_evaluation.docx. Find out which terrorist organization is secretly
supported by job applicant starting with K

Added a random url to end of link and was greeted with...

W

LOL ERRORI!

Publicly accessible file Sgtr’Ved fropm:
Caeareerpertal\resourees\public\ net, feund.....

Try:
httfs:flcarccrs.krihglccastle .C°mlFIl:A)£>liel 'file pare you are [‘"’Jﬁihg for'
This shows the public directory that could hold the csv file
It seems our course of action is to copy the file there and download it from there
| created a csv file and used the following command and saved it as a csv file
= =cmd|'/c powershell.exe -W Hidden Copy-Item "C:\candidate_evaluation.docx"
"C:\careerportal\resources\public\csvfile.docx";'|A1l
o Pushed this file on the site as an attachment
o Entered https://careers.kringlecastle.com/public/csvfile.docx into URL to get a file
o Saved the file and opened it

O O O O

E1f Infosec Placement / Access Evaluation

[candidate Name: Krampus |

‘quide positional,

i
o Santa's Castlo. Check the app
and provid comments in the space below.

£
<4

5. Outstandi
4. E:
3. Co

Rating Scale:

mpetent—acceptable
proficiency

| 5 [4 3] 1

Relevant Background/Special SKill Set: Explore the 2
candidate’ Inf
I

| Organizational Fit: T

o The answer is on the 2" page

Furthermore, there is intelligence from the North Pole this elf is linked to cyber terrorist
organization Fancy Beaver who openly provides technical support to the villains that attacked
our Holidays last year.

o Fancy Beaver
Objective 8: Network Traffic Forensics
o Alink to a web-based packet analyzer is given. Access and decrypt HTTP/2 network
activity to find song described in the document sent from Holly Evergreen to Alabaster
Snowball.
o The clue was to take a look at the HTML so | registered, logged in, and did view page
source

Since there was a lot of information, | just looked at the comment lines for the
html and scripts section

In the script section, there is a file upload function that says “All extensions and sizes are
validated server-side in app.js”

So | tried finding app.js. Most of the javascript files were on /pub/js/ but | could not find
app.js there. I tried it on /pub/ and it worked

#!/usr/bin/node
//pcapalyzer - The web based packet analyzer
const cluster require ('cluster');

const os

const
const
const
const
const
const

require('os');

path = require('path');

fs = require('fs");

httpZz = require("http2'):;

koa require ('koa');

Router require ('koa-router');
mime require ('mime-types');

Lots of information but one thing to note is that are two things of interest: key_log_path

and a function to create environment variable directories

const dev_mode true;
const key log_path = { !dev_mode
function load_envs () {
var dirs [1
var env_keys
£OT

Object.keys (process.env)
(var i=0; i < env_keys.length; i++) {

|| __dirname + process.env.DEV + process.env.SSLRKEYLOGFILE)

if (typeof process.envlenv_keys[i]] === "string") {
dirs.push(("/"+env_keys[i] .toLowerCase ()+'/*"'))

}

return uniqueArray(dirs

“)> e @

EISDIR:

¢ @

Error: ENOENT: no such file or directory,

Error:

<«

illegal operation on a directory,

@& n

Only dev gave a result

é

CLIENT_ RANDOM
CLIENT RANDOM
CLIENT RANDOM
CLIENT_RANDOM
CLIENT RANDOM
CLIENT RANDOM
CLIENT RANDOM
CLIENT RANDOM
CLIENT_RANDOM
CLIENT RANDOM
CLIENT RANDOM
CLIENT RANDOM
CLIENT RANDOM
CLIENT_ RANDOM
CLIENT RANDOM
CLIENT RANDOM
CLIENT_ RANDOM
CLIENT RANDOM
CLIENT_RANDOM
CLIENT RANDOM
CLIENT RANDOM
CLIENT RANDOM
CLIENT RANDOM
CLIENT_RANDOM
CLIENT_ RANDOM
CLIENT RANDOM
CLIENT RANDOM
CLIENT RANDOM
CLIENT_RANDOM
CLIENT RANDOM
CLIENT RANDOM

O

o This seems to be a log file of the SSL keys. | sniffed traffic on the site and downloaded it
so | could open on wireshark for further use. In order to use this debug file, | saved it as

C @

kringlecastle.com/

E6F732B69E2741F225EE74F7AZ297FF1ABCT856735F1B8669996CA13D0CDT7531C
F23613401C71765572AB2E25640C1FBF9839D5AC30621AAEDBSEEGABSFE66F10
4EE019571D9D16B392C6A56450F312DD95632752B7716AAT791D2CCAACTR11041
OBSEE7DEQ06IACS218A33893A35BI7RCVE76D23C0CCEF0ACF7364B0AASSCDADY
CEBCF60324E6D2BESB380A9EBCCEC382741CCBE6ES3EBEOSCEESICEOIFITFIEC
C61686071B5DF3BA2B1444832F20ES69C1394AD8126669C4C40CI9BCE6DSSBELIFY
ADB57C018562C3F1ECD718F8FEOF24BB5CDF184AFESEBCC5A1CELT48C12DDFBC
6DB110C23EC039D0F1ES3D2203FFAC45F139DD3AE65201D19FTERB738BBT7828CA
2FDASEOBOF4EFS84BCDASB4309D5A8394ARDE566EC3AR403EFERT090DE5318ACE
E64CF015D135C76C6ET7243BF3560446845151C1A86B9883247C953434375C440
FE660E21830890F139A53FR6F5SD4BRAFET2466986180D1DA16F62197DC36C03A0
1Cc75A36E14117AD6FE498FAR3C19F6ERB3400803F0EBBB2B64B6996842DDEIAY
ADBCDAT980912F2B06D265FE4FGES1FOC226602E1DBBCFT7398F880B7486A768
856B4C1ESCS7RFODDEL3A2642D5DES398ERD3SAEE47B1107B9810CB603464DDE
C746EE79FSADTF327616E5ABA1 6AS3AES32AD01ADB3%15E9F104CDS8EOOCATED
OFT749C2B74A9E3D96F6E54D963335E590C0FA4DF0216C5940DBEFDED2A207CEA
72031A55D61F879D8970018E4FD7B0BCBU41C0A22E3141156B1A86EBEG4D2CTF
BDSBD29DE1547494955DDB4C1191950FCEDEC2D973E048CFEAE3ES2073D92186
CFDE1752DBCD3ES0D2A2CE98610832FFF2F07C64EOEGECAB4DE16AAEET7T0FDFE
2103REA34035962E1637D6D32CR87164D41364AR12132244946076D696ES7846
87CC3996R46E72369DTAGCAF66FSEFE0T7A4803F5F4BO0F6FC57D14878DF0151D
B56023A9BC22C9F1213FA3T7CA46FOESEAD56088A13BD1B0O0CASC57305157F899
D4BBEC34AFBA290F05EE48DB2EG38C4FD38A1A92B329919886564465382BCEA
CBED99EBOUBE689C31A068CACCS537578A7C301D933D2629F079F2B0FOARDAOCE
FCE66ERFSCE25AT090F34F32A73F3A1605F0BA1ARS518A4A16ETTF3F942C776881
335D6C86FFETBF6DFCS56DE41ES07A49EBAFS5D100420C825A71D56DFBO9AS763C
ASBSCFEA2BTD3AD97284415E3611757BCOBEDECF2C102D10E90F5SB0452FEFBEY
42BFAD38C17DED7CBES04FB2D6B52A916C0807010D110A1D26A85EA173E81521
CeFASTFEQ273A56F086AC3A61C194A2EESAROCA40COALS3BFDOSDATOIECORSOF
5649R03088A1F3418B01FD46001DCEIEEDESCS8714BB5DE1IF227C3DCF77B48C2
1D7BFEE175039C4D0F821D71C0A307932B2B2A4ED68F13519D6803725155F18EE
ANADAIERAINEEARIDDAIDEIDNARAIEATTINCATEDAACGEANT 2AENINITECAZNTACETA

Tried playing around with the directory names in first screenshot

-~ p 3 4 .
@® @ https://packalyzer kringlecastle.com/dev/

read

s://packalyzer.kringlecastle.com/SSLKEYLOGFILE/
open '/opt/httpZpackalyzer clientrandom ssl.log/'

SSLKEYLOGFILE gave me a logfile directory. | attached this on both dev and sslkeylogfile.

348BT7E6ODCBCF34659E132726609AATDC
25FAF2ET672646DCARABDA0DFS39E032CE
E790807D69393362205B62EF6DE1602EE
FC72BCT738F2B0BF759D92BAA0TCOF6EC]
AGE3316C994812B6A603BC34CAIDETAST
TB6AF349FD2D2314C40909CDE11CT7CCEE
ODTAFBAE5059DFD6AS35AA9FSEFB641D1
63D250626023B54355ADCF44BAEOFSFBS
BeSTBDEOERFCO4FOSA4EG046EER3DT 96T
1D4C9F435AB85DC4CCIAFS8CCOEDTFCDE
DE9A1C960R35BA45B6296ASB32C1D5871
8872B34742DCD61D6A19B40356884813¢8
C6ETTEAEBAF40ESDD021%98DD4673159T
T5FEBDE4896491663AE22BCC15COF1D3T
87A6DGA2FB321B23AD111336DAS938D3R
076CA4185B17EB950BCBAFS3ETF204E11
E62778DF8CEOAGCDACAE33DTB59720ACE
EB40629B949B4BEEF28CB3FF139D7C1DE
9D15EBGEDY6R51283572F620D6AD46CT2
241DD3F8CC1B4F3F074E9BBISACB538CE
334FE04BFD1A7BDBF85C2AECO4DO0OF04C
666EE165F3ETEOFAF3DF5A707BRBEOALIDE
BF9BC2E236A0DB79ACTOFBDEI5AADST6¢€
9D086CE2DC3C2B2BAGDF2D3649B43BEDL
AFOFC538194EAC47317880592726F78C¢
B6C06B755C6F253E0EDEA4AB]1 6074A42BE
1168D230B51C2AED3838DESSEEDEBA56E
84ca4a9190715291BCCAF030B4DBDEAT S
F1409E65A3B25CT7F55F1A18D58F10B56¢S
C21274706D37F0525DD9F7210ETE1EELS
924076D4E4217BB1D42A4ADBOD3880BF:
78EAD17~2D82NDFE1DGADATATTAAGANANT

a log file, went to wireshark edit—> preferences—> protocols=> SSL-> and browsed for
the log file (Pre)-Master-Secret log filename

(Pre)-Master-Secret log filename

|'qu:rrk".,N ew folder\packalyzer_clientrandom_ssl.log | Browse...
O
o *¥***MAKE SURE TO DO IN FOLLOWING ORDER: sniff packet> download to computer—>
go to link to find keys—> save keys—> then set wireshark settings to decrypt****
No. Time Source Destination Frotocol Length Info
C 638961 10.126.0.106 TCP 74 37631 » 443 [SYN] Seq=8 Win-=43698 Len-8 MSS=6549
598975 110.126.0.3 TP 4 443 > 37631 [SYN, ACK] Sec ‘Win=43690 Len
698987 10.126.0.106 TCP 66 37631 » 443 [ACK] Seq=1 Ack=1 Win-43776 Len=0 TS
7089505 10.126.0.106 TLSv1.2 26@ Client Hello
.709525 10.126.0.3 0. TCP 66 443 » 37631 [ACK] Seq=1 Ack=195 Win=44800 Len=0
.711208 10.126.0.3 .. TLSv1.2 3106 Server Hello, Certificate, Server Key Exchange,
711245 10.126.0.106 .8 TCP 66 37631 + 443 [ACK] Seq=195 Ack=3041 Win=174720 Le
.712196 10.126.0.106 0. TLSv1.2 192 Client Key Exchange, Change Cipher Spec, Finishe
.713013 10.126.0.3 L. TLSv1.2 117 Change Cipher Spec, Finished
10 15: 713062 10.126.0.3 .e. HTTP2 104 SETTINGS[®]
lES15E .713288 10.126.0.106 0. HTTP2 119 Magic
12 15:45:06.713340 10.126.0.106 8. HTTP2 122 SETTINGS[@]
13 15:45:06.713348 10.126.0.3 16.126.0.106 TCP 66 443 » 37631 [ACK] Seq=313@ Ack=430 Win=44800 Len
14 15:45:06.713421 10.126.0.3 10.126.0.166 HTTP2 104 SETTINGS[@]
15 15:45:06.713447 10.126.0.106 16.126.0.3 HTTP2 108 WINDOW_UPDATE[@]
16 15:45:06.713510 10.126.0.106 16.126.0.3 HTTP2 221 HEADERS[1]: GET /
17 15:45:06.713518 10.126.0.3 10.126.0.166 TCP 66 443 » 37631 [ACK] Seq=3168 Ack=627 Win=45952 Len
o 18 15-AS5-AA 714AR22 108 126 A 3 18 126 A 106 HTTP?2 20AA NATAT1]
o Walah, | see the http2 protocols
o Since my skill with Wireshark filtering is extremely lacking, | filtered to show all http2
packets and then proceeded to do edit—> find packet=> and searched for string
“password” in packet details, then kept pressing enter until | found credentials for
Alabaster Snowball
[httpz
Packet details | Narrow & Wide ~| [] case sensitive String - |password
No. Time Source Destination Protocol Length Info
352 15:45:16.163640 10.126.0.3 10.126.0.104 HTTP2 104 SETTINGS[@]
353 15:45:16.163664 10.126.0.104 10.126.08.3 HTTP2 108 WINDOW_UPDATE[@]
354 15:45:16.163742 10.126.0.104 10.126.6.3 HTTP2 298 HEADERS[1]: POST /fapi/login
| 356 15:45:16.164465 10.126.0.104 10.126.0.3 HTTP2 104 SETTINGS[@]
| 3. 15:45:16.164527 10.126.0.104 10.126.0.3 HTTP2 202 DATA[1] (application/json)
Frame 357: 202 bytes on wire (1616 bits), 202 bytes captured (1616 bits)
Ethernet II, Src: 90:00:00 00:00:00 (00:00:00:00:00:00), Dst: 60:00:00 00:00:00 (00:00:00:00:00:08)
Internet Protocol Version 4, Src: 10.126.0.104, Dst: 10.126.0.3
Transmission Control Protocel, Src Port: 54871, Dst Port: 443, Seq: 742, Ack: 3168, Len: 136
Secure Sockets Layer
v HyperText Transfer Protocol 2
v Stream: DATA, Stream ID: 1, Length 98
Length: 98
Type: DATA (@)
Flags: @x01
@on cunk nEk This SEvr waiEn vwis wisv = Reserpved: @x@
.00 0000 0000 0000 0000 0000 2000 0801 = Stream Identifier: 1
[Pad Length: @]
v Content-encoded entity body (gzip): 98 bytes -> 65 bytes
Data: 7b22757365726e616d65223a2022616c6162617374657222. ..
v JavaScript Object Notation: application/json
v Object
~ Member Key: username
String value: alabaster
Key: username
v Member Key: password
String value: Packer-p@re-turntable192
Key: password
0000 7b 22 75 73 65 72 6e 61 6d 65 22 3a 20 22 61 6¢c {"userna me": "al
61 62 61 73 74 65 72 22 2c 20 73
3a 20 22 50 A
75 72 be 74 2
0040 7d
O
o Clearly my filtering skills are top notch

o When | login into his account

Saved Pca pPs
Name Download Reanalyze Delete

super_secret_packet_capture.pcap i B i

CLOSE

o Opened pcap and followed TCP stream to understand what is going on. The attachment
will have our answer

o Sinceitis encoded in base64, | use a decoder to see that it’s a pdf. | save the decoded

string as a pdf and everything displays as intended

freeformatter-decodedpdf.pdf

A piano keyboard gives us easy access to every (wester) tone. As we go from left to right, the

pitches get higher. Pressing the middle A, for example, would give s a tone of 440 Hertz.
Pressing the next A up (to the right) gives us 880 Hz, while the next one down (left) produces
220 Hz. These A tones each sound very similar to us - just higher and lower. Each Ais an
“octave" apart from the next. Going key by key, we count 12 "half tone” steps between one A
and the next - 12 steps in an octave.
As you may have guessed, elf (and human) ears perceive pitches logarithmically. That s, the
frequency jump between octaves doubles as we go up the keyboard, and that sounds normal to
us. Consequently, the precise frequency of each note other than A can only be cleanly
expressed with a log base 12 expression. Ugh! For our purposes though, we can think of note
separation in terms of whole and half steps.
Have you noticed the black keys on the keyboard? They represent half steps between the white
keys. For example, the black key between C and D is called C# (c-sharp) or Db (d-flat). Going
from C to D is a whole step, but either s a half step from C#/Db. Some white keys don't have
black ones between them. B & C and E & F are each only a half step apart. Why? Well, it

O tums out that our ears like it that wav. Try this: oress C D E F G A B C on a piano. It sounds

o Flag: Mary Had a Little Lamb
e Objective 9: Ransomware Recovery
o Part 1: Catch the Malware—> build Snort filter to identify malware
= What in the world is a Snort filter?
e Snort is an open source IDS and IPS. Interesting™
= This is beyond my abilities so | will put this on hold until | understand how snort
even works.
e Random Cranberry Pi Terminal Challenges
o Exit out of vim—> :qor:q!
o The name game—> All we have is the name “Chan”
= putting a random server address yields...

alidating data store for employee onboard information
Enter address of server: asdf.com

: unknown host asdf.com
: SQLite 3.x database
Press Enter to continue...:

= “onboard.db: SQLite 3.x database” seems like useful information
= The elf said you can inject commands into PowerShell using semicolon
= Time to see if Is works to see if there are any directories or files

|n enu.psl onboard.db runtoanswer bingo

= The elf also mentioned a .dump command for databases and obsession over
SQlLite

= Googling shows that | can try out ;sqlite3 onboard.db .dump

= Unfortunately, this gives a ginormous list of info, so grepping “Chan” gives the
answer

= His first name is “Scott” which can be inputted by doing ;runtoanswer

Mini forensics on vim—> history command or use up button to scroll through commands
and see a hidden directory, cd to it, and cat file to get “NEVERMORE”
= But thatisn’t the answer. His history also shows evidence of him researching on
“replacing strings in vim”
= DoingIs -a shows a .viminfo file and catting that shows that he did the
command: “%s/Elinore/NEVERMORE/g”
= So the answer is “Elinore”
Yule Log Analysis—> an .evtx file was given and a python script to convert it to XML for
easy grepping
= Lets take a look with Is

1f@843a28da75ce:~$ 1s
n evtx dump.py ho-ho-no.evtx

= Seems like the necessary files are in place, time to run the script on the evtx file.
Should be easy, right?
= “Permission denied”-> | guess the python script doesn’t have proper
permissions. Nothing a little chmod can’t fix.
= Running the script results in....quite a lot of information. I'll probably be in my
late 70’s before | finish reading it line by line.
= | tryto find things | can grep and notice there is EventID Qualifier.
e cat textfile.txt | grep "EventID Qualifier" | sort | uniq -c
= Googling a list of these event id qualifiers show that’s 4624 means successful
login and 4625 is unsuccessful. Considering there is 212 4625s, clearly
something is up
= cat textfile.txt | grep "4625" -B 15 | grep "IpAddress" | sort | uniq -c to find Ip
address
= Now that we know the guilty IP address
e cat textfile.txt | grep "4624" -B 15 | grep "172.31.254.101" -A11 | grep
"TargetUserName"
e find what was the success

elf@c3b46e5d6adl:~$ cat textfile.txt | grep "4624" -B 15 | grep "172.31.254.101"
ep "TargetUserName"
- EventData><Data Name=" ">minty.candycane@EM.KRINGLECON.COM</Data>

= Minty.candycane@EM.KRINGLECON.COM
Stall Mucking Report-> finding passwords in memory

= Psaux | less = find previous commands

= Password can be found to be “directreindeerflatterystable”

= Next step is to upload the file using this password

= smbclient -U report-upload //localhost/report-upload -c 'put report.txt'
directreindeerflatterystable

CURLing master—> something is up with nginx.conf file, send right HTTP request

= (Cat /etc/nginx/nginx.conf

= Seems like http2 is enabled when taking a look at this configuration file

= Googling shows that curl command has a —http2-prior-knowledge option

= Then | am given the instructions “To turn the machine on, simply POST to this
URL with parameter "status=on"”

O

O

= curl --http2-prior-knowledge localhost:8080 POST -d "status=on"
Dev Ops Fail> creds were put on github, try to find password
= First cd into the only directory that | could find and do git log
= A quick scan shows “removed username/password from config.js”
= | did git show 60a2ffea7520ee980a5fc60177ff4d0633f2516b which is the

commit number of that message

diff --git a/server/config/config.js.def b/server/config/config.js.def
ew file mode 100644

lindex 0000000..740eba5
-- [dev/null
++ b/server/config/config.js.def

= The red and green show what changed

= Therefore the password is: twinkletwinkletwinkle
Python Escape from LA terminal is trapped inside a python, try to escape python
interpreter

= Let’s try some super basic stuff: quit() and ctrl d

e Seems like neither works, it goes to a newline and doesn’t allow for any
inputs
= Maybe | can import subprocess to take arguments and test commands

>>> import Eul::-prn::cess
Use of the command import is prohibited for this gquestion.

= Maybe as an import function?

>>> import subprocess
Use of the command import is prohibited for this question.

= Seems like import isn’t a valid command so I'll try out eval() to break up this
filtered word into 2 sections
sub=eval(' 1im'+'port ("subprocess")')

= Success. Subprocess module has a call command so you can do any command.
> suboeald () ist S=al2)

elf elf
root root e) ..
el el P g 2015 .bash logout
elf elf
elf elf
—rwXIr—-Xr-x root root 5547
0

®* Foundthei_escaped file so now | can run it

sub.call(['./i escaped'])
Loading, please wait......

Yay
o The Sleighbell> Help elf win all the time, told to use GNU debugger and PEDA modules
= What we start with

= Load the binary using GDB—> gdb sleighbell-lotto
= Set disassembly-flavor intel

= Disassemble main

= Theres a section that says “winnerwinner”

= Break main

= Run

= Jump winnerwinneer

(gdb) jump winnerwinner
Continuing at 0x55

the race.

we did out-pace.
And now they'll
They'll all watch
[L'11 hang the bells on Santa's sleigh!

ou've won, and have successfully completed this challenge.
[Inferior 1 24) exited normally]
u (gdb)

= | personally have very little experience with assembly and gdb, will definitely
need to do more personal study

